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Outline

• Principles and modes of heat transfer

• Energy conservation equation

• Initial and boundary conditions for energy 
conservation

• Principles and modes of mass transfer

• Mass conservation equation

• Initial and boundary conditions for mass conservation
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Temperature field in the subsurface

• The temperature field in the subsurface is typically sensitive to atmospheric 
conditions within the first 10-15 m
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The Ground Source Heat Pump System

Modified after Agentur für Erneuerbare Energien
(reproduced with permission)
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The technology

Return of the heat
transfer fluid

Inflow of the heat
transfer fluid

Pile

Reinforcing
cage

Heat exchanger
tube
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The typical problem

• Four typical materials:

• Heat carrier fluid
• Pipes
• Reinforced 

concrete
• Soil/rock

• Two phenomena:

• Heat transfer
• Mass transfer

• Two master equations:

• Energy cons. eq.
• Mass cons. eq.
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Principles and modes
of heat transfer
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• (Thermal) Energy in the form of heat is transferred between any two 
particles of matter that are at different temperatures

• These particles can be, for example, part of

• the same solid body
• two different solids
• a fluid mass
• a solid and a fluid

• Heat transfer cannot be measured directly, but its occurrence can 
be related to a scalar quantity, i.e., temperature, 𝑇𝑇

• Heat (as mass) transfer can be described via rate equations

Fundamentals of heat transfer
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• There are 2 fundamental modes of heat transfer:

• Conduction
• Convection

• Radiation phenomena may also characterise heat transfer, 
however they generally play a negligible role in energy geostructure 
applications

• Latent processes caused by phase changes of the constituents of 
the medium may characterise heat transfer, but are generally 
negligible in energy geostructure applications

Modes of heat transfer
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Examples of heat transfer phenomena

(Laloui and Rotta Loria, 2019)
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• Heat transfer mode that occurs at the molecular and atomic levels 
between particles of a solid or a fluid at different temperatures

• Conduction is generally associated to an invisible motion of the 
particles that constitute the medium

Conduction

(Laloui and Rotta Loria, 2019)
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• The rate equation describing conduction is Fourier’s law

• 𝑞̇𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖 = energy density by conduction
• 𝑄𝑄 = heat energy
• 𝑄̇𝑄 = heat power
• 𝐴𝐴 = Area
• 𝑡𝑡 = time
• 𝜆𝜆 = thermal conductivity

Fourier’s law

𝑞̇𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖 =
𝑄𝑄
𝐴𝐴𝐴𝐴 =

𝑄̇𝑄
𝐴𝐴 = −𝜆𝜆

𝜕𝜕𝜕𝜕
𝜕𝜕𝑛𝑛𝑖𝑖

= −𝜆𝜆𝛻𝛻𝑇𝑇 = −𝜆𝜆(
𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕 𝑒̂𝑒𝑥𝑥 +

𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕 𝑒̂𝑒𝑦𝑦 +

𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕 𝑒̂𝑒𝑧𝑧)
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• Fourier’s law can be markedly simplified for problems involving 
plane geometries under steady state conditions

• These situations characterise, e.g., the operation of energy walls

Fourier’s law: simplified formulation

𝑞̇𝑞𝑥𝑥 = −𝜆𝜆
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = −𝜆𝜆

𝑇𝑇2 − 𝑇𝑇1
𝑡𝑡𝑤𝑤

=
𝜆𝜆 𝑇𝑇1 − 𝑇𝑇2

𝑡𝑡𝑤𝑤

(Laloui and Rotta Loria, 2019)
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• The thermal conductivity of soils markedly depends on (see, e.g., 
Brandon and Mitchell, 1989; Alrtimi et al., 2016; Vulliet et al., 2016)

• Mineralogy
• Dry density
• Water content
• Gradation

• In a similar way, the thermal conductivity of concrete markedly 
depends on (see, e.g., Morabito, 1989; Lanciani et al., 1989; 
Neville, 1995; Kim et al., 2003)

• Aggregate types and sources
• Dry density
• Water content
• Mix proportioning

Thermal conductivity



Lyesse LalouiHeat and mass transfers in the context of energy geostructures 15

Thermal conductivity of constituents

Material Thermal conductivity, 𝝀𝝀𝒊𝒊 [W/(m °C)]
Air 0.024

Water 0.6
Feldspar 1.4 – 2.5

Plagioclase 1.5 – 2.0
Mica 1.6 – 3.5

Amphibole 2.8 – 4.8
Garnet 3.1 – 5.5
Olivine 3.2 – 5.0

Pyroxene 3.5 – 5.7
Calcite 3.6
Chlorite 5.2
Quartz 7.7

(Laloui and Rotta Loria, 2019;
data from Banks (2012), Côté and Konrad (2005) and Midttømme et al. (2008), after Loveridge (2012))
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Typical soil thermal conductivity

Typical relationship for an unfrozen (a) coarse-grained soil and (b) fine-grained soil 
(redrawn after Brandl (2006))
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Typical calculation approach for 𝜆𝜆

• The effective thermal conductivity of porous materials, such as soils, 
rocks and concrete, assumed to be isotropic and with pores fully 
filled with a fluid, can be evaluated as

• 𝜆𝜆𝑓𝑓 = thermal conductivity of the general fluid filling the pores 
• 𝜆𝜆𝑠𝑠 = thermal conductivity of the solid particles
• 𝑛𝑛 = material porosity

• For materials with pores fully saturated with water, 𝜆𝜆𝑓𝑓 is replaced by 
the thermal conductivity of the water 𝜆𝜆𝑤𝑤. 

𝜆𝜆 = 𝜆𝜆𝑓𝑓𝑛𝑛 + 𝜆𝜆𝑠𝑠(1 − 𝑛𝑛)
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• Heat transfer mode that characterises fluids in motion with a 
temperature gradient

• Convection is associated with the superposition of two mechanisms: 

• Energy transport by a diffusion motion of the fluid
• Energy transport by a bulk motion of the fluid (mass transfer)

• Convection heat (and mass) transfer can be associated to:

• Internal flow problems: the fluid in motion is completely bounded 
by a surface

• External flow problems: the fluid in motion is not completely 
bounded by a surface

• Seepage flow problems: the fluid is in motion across a 
permeable material medium

Convection
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• The rate equation governing convection is Newton’s law of cooling

• 𝑞̇𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖 = energy density by convection
• ℎ𝑐𝑐 = convection heat transfer coefficient
• 𝑇𝑇𝑠𝑠 = surface temperature
• 𝑇𝑇∞ = fluid temperature

Newton’s law of cooling

𝑞̇𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖 = ℎ𝑐𝑐 𝑇𝑇𝑠𝑠 − 𝑇𝑇∞

(Laloui and Rotta Loria, 2019)
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• The motion of fluids is the result of a force

• Free or natural convection: when the force that causes the 
motion of the fluid is due entirely to density variations caused by 
a non-uniform temperature distribution

• Forced convection: the force that causes the motion of the fluid 
is due to any other cause

• In soils, the moving particles that typically transport heat are water 
molecules

Natural and forced convection



Lyesse LalouiHeat and mass transfers in the context of energy geostructures 21

• The convection heat transfer coefficient ℎ𝑐𝑐 and the separate terms 
𝜌𝜌𝑓𝑓𝑐𝑐𝑝𝑝𝑝𝑝𝑣̅𝑣𝑟𝑟𝑟𝑟,𝑖𝑖 depend on:

• The nature of the fluid in motion
• An assortment of fluid thermodynamic and transport (mass) 

properties

• In the analysis of internal and external flows related to airflows, the 
convection heat transfer coefficient is often expressed as

Convection heat transfer coefficient

ℎ𝑐𝑐 = ℎ𝑐𝑐,𝑛𝑛 + ℎ𝑐𝑐,𝑓𝑓
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Convection heat transfer coefficient (Laloui and Rotta Loria, 2019;
redrawn after Bourne-Webb et al., 2016)
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• In the context of the analysis of convection heat transfer associated 
with seepage problems, Newton’s law of cooling reads

• 𝑐𝑐𝑝𝑝,𝑓𝑓 = specific heat of fluid
• 𝜌𝜌𝑓𝑓 = density of fluid
• 𝑣̅𝑣𝑟𝑟𝑟𝑟,𝑖𝑖= relative velocity of water with respect to the solid skeleton

• Convection is significant only if consistent fluid flow is present

• In soils, this is often the case in sandy or gravelly materials (highly 
permeable materials), while it is not for clays (low permeable 
materials)

Newton’s law of cooling

𝑞̇𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖 = 𝜌𝜌𝑓𝑓𝑐𝑐𝑝𝑝,𝑓𝑓 �𝑣𝑣𝑟𝑟𝑟𝑟,𝑖𝑖 𝑇𝑇𝑠𝑠 − 𝑇𝑇∞
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Typical calculation approach for 𝜌𝜌𝑐𝑐𝑝𝑝

• The effective volumetric heat capacity of porous materials fully 
saturated with a fluid can be calculated as

• 𝜌𝜌𝑓𝑓𝑐𝑐𝑝𝑝,𝑓𝑓= volumetric heat capacity of the general fluid filling the pores
• 𝜌𝜌𝑠𝑠𝑐𝑐𝑝𝑝,𝑠𝑠= volumetric heat capacity of the solid particles

• For soils fully saturated with water, 𝜌𝜌𝑓𝑓𝑐𝑐𝑝𝑝,𝑓𝑓 is replaced by the 
volumetric heat capacity of the water 𝜌𝜌𝑤𝑤𝑐𝑐𝑝𝑝,𝑤𝑤

𝜌𝜌𝑐𝑐𝑝𝑝 = 𝜌𝜌𝑓𝑓𝑐𝑐𝑝𝑝,𝑓𝑓𝑛𝑛 + 𝜌𝜌𝑠𝑠𝑐𝑐𝑝𝑝,𝑠𝑠(1 − 𝑛𝑛)
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Typical soil volumetric heat capacity

(Laloui and Rotta Loria, 2019;
redrawn after Dysli, 1991)
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Energy conservation 
equation
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• The energy conservation equation is the master equation that 
governs heat transfer phenomena in physical systems

• For any isolated domain, the considered equation expresses that 
the amount of energy remains constant, i.e., energy is neither 
created nor destroyed but can only be converted

• Usually derived in an elementary manner based on an energy 
balance for an elementary volume

Rationale
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• The Fourier heat conduction equation is obtained in this way, 
neglecting any conversion of mechanical energy into heat and 
considering an isotropic body subjected to:

• arbitrary thermal conditions on its surfaces
• internal volumetric heat generation 𝑞̇𝑞𝑣𝑣 per unit time

The quantity 𝛻𝛻2𝑇𝑇 is as follows in Cartesian coordinates 𝑥𝑥, 𝑦𝑦, 𝑧𝑧:

𝛻𝛻2𝑇𝑇 = 𝜕𝜕2𝑇𝑇
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝑇𝑇
𝜕𝜕𝑦𝑦2

+ 𝜕𝜕2𝑇𝑇
𝜕𝜕𝑧𝑧2

Energy conservation equation

𝜆𝜆𝛻𝛻2𝑇𝑇 + 𝑞̇𝑞𝑣𝑣 = 𝜌𝜌𝑐𝑐𝑝𝑝
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
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• If no heat is generated in the medium, the Fourier equation reads

• 𝛼𝛼𝑑𝑑 = 𝜆𝜆
𝜌𝜌𝑐𝑐𝑝𝑝

= thermal diffusivity

• 𝛼𝛼𝑑𝑑 measures the ability of a material to conduct thermal energy 
relative to its ability to store thermal energy (Hermansson et al. 
2009)

• Soils of large 𝛼𝛼𝑑𝑑 will respond quickly to changes in their thermal 
environment and vice versa

• The higher the value of 𝛼𝛼𝑑𝑑 the faster the heat propagation in the 
medium

Simplified Fourier heat conduction equation 

𝛼𝛼𝑑𝑑𝛻𝛻2𝑇𝑇 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
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• The case in which the temperature distribution is independent of 
time and no heat sources are present can be of interest

• The above involves the Laplace’s equation

• When convection is aimed to be included in the heat transfer 
analysis, the energy conservation equation

Other formulations of the Fourier heat conduction equation 

𝛻𝛻2𝑇𝑇 = 0

𝜆𝜆𝛻𝛻2𝑇𝑇 + 𝑞̇𝑞𝑣𝑣 = 𝜌𝜌𝑐𝑐𝑝𝑝
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝜌𝜌𝑓𝑓𝑐𝑐𝑝𝑝,𝑓𝑓𝑣̅𝑣𝑟𝑟𝑟𝑟,𝑖𝑖𝛻𝛻𝑇𝑇
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• The full mathematical description of heat transfer needs initial and 
boundary conditions to be solved

• The unique case in which no initial conditions are needed is in the 
steady state problem governed by 𝛻𝛻2𝑇𝑇 = 0

• In almost all problems, the typical initial condition employed is to 
assume a constant initial temperature, i.e., 𝑇𝑇0 = const

Initial and boundary conditions
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• Also known as Dirichlet’s boundary condition or boundary condition 
of the first kind

• ℋ= point on the considered surface
• 𝑓𝑓(𝑀𝑀, 𝑡𝑡) = prescribed function

Prescribed surface temperature

𝑇𝑇 ℋ, 𝑡𝑡 = 𝑓𝑓(ℋ, 𝑡𝑡)

(Laloui and Rotta Loria, 2019)



Lyesse LalouiHeat and mass transfers in the context of energy geostructures 33

• Also known as Neumann’s boundary condition or boundary 
condition of the second kind

• 𝑛𝑛𝑖𝑖 = outward normal to the surface at point ℋ

Prescribed heat input

−𝜆𝜆
𝜕𝜕𝜕𝜕
𝜕𝜕𝑛𝑛𝑖𝑖

(ℋ, 𝑡𝑡) = 𝑞̇𝑞(ℋ, 𝑡𝑡)

(Laloui and Rotta Loria, 2019)
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• Also known as Cauchy’s or mixed Neumann’s boundary condition or 
boundary condition of the third kind

Convection boundary condition

−𝜆𝜆
𝜕𝜕𝜕𝜕
𝜕𝜕𝑛𝑛𝑖𝑖

ℋ, 𝑡𝑡 = ℎ𝑐𝑐[𝑇𝑇∞ − 𝑇𝑇 ℋ, 𝑡𝑡 ]

(Laloui and Rotta Loria, 2019)
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• If two bodies are in perfect thermal contact

• their temperature at the surface contact must be the same
• the heat flux leaving one body through the contact surface must 

be equal to that entering the other body

• 1 and 2 = labels for the two bodies
• 𝑛𝑛𝑖𝑖 = common normal to the contact surface at ℋ

Interface boundary condition (perfect thermal contact)

𝑇𝑇1 ℋ, 𝑡𝑡 = 𝑇𝑇2(ℋ, 𝑡𝑡)

𝜆𝜆1
𝜕𝜕𝑇𝑇1
𝜕𝜕𝑛𝑛𝑖𝑖

ℋ, 𝑡𝑡 = 𝜆𝜆2
𝜕𝜕𝑇𝑇2
𝜕𝜕𝑛𝑛𝑖𝑖

ℋ, 𝑡𝑡



Lyesse LalouiHeat and mass transfers in the context of energy geostructures 36

Principles and modes
of mass transfer
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• Mass, in the form of generic particles constituting a fluid volume, is 
transferred by convection between any two regions of a continuous 
system that are characterised by different hydraulic heads

• Hydraulic heads are the potential variable that governs mass 
transfer

• The gradient of these variables govern mass transfer in much as 
the same way a temperature gradient characterises heat transfer

Fundamentals of mass transfer
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• The global hydraulic potential that describes mass transfer is the 
total head, 𝐻𝐻

• This potential is made of three contributions that characterise fluids 
at each point:

• the elevation head, ℎ𝑧𝑧, due to the weight of the fluid
• the pressure head, ℎ𝑝𝑝, due to the static pressure
• the velocity head, ℎ𝑣𝑣, due to the bulk motion of the fluid

• The expression of the total head, e.g., considering water, reads

Fundamentals of mass transfer

𝐻𝐻 = ℎ𝑧𝑧 + ℎ𝑝𝑝 + ℎ𝑣𝑣 = 𝑧𝑧 +
𝑝𝑝𝑤𝑤
𝛾𝛾𝑤𝑤

+
𝑣𝑣𝑤𝑤2

2𝑔𝑔
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• There are 2 fundamental modes of mass transfer:

• Laminar flow
• Turbulent flow

• Laminar flow - the trajectories of the single particles constituting the 
fluid in motion coincide with the effective trajectories of the average 
fluid motion

• Turbulent flow - the trajectories of the single particles constituting 
the fluid in motion are random and no more coincident with the 
effective trajectories of the average fluid motion

Modes of mass transfer
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• The distinction between laminar and turbulent flows is based on the 
knowledge of the Reynolds number

• 𝑣𝑣∞ = characteristic velocity of the fluid (i.e., mean relative velocity)
• 𝑥𝑥 = characteristic length of the considered problem (i.e., hydraulic 

diameter for a flow within a circular pipe)
• 𝜇𝜇𝑓𝑓 = the dynamic viscosity of the fluid

• Reynolds number represents the ratio of inertia to viscous forces

Reynolds number

𝑅𝑅𝑒𝑒𝑥𝑥 =
𝜌𝜌𝑓𝑓𝑣𝑣∞𝑥𝑥
𝜇𝜇𝑓𝑓
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• For flows over plane surfaces: 105 ≤ 𝑅𝑅𝑒𝑒𝑐𝑐 ≤ 3 � 106 (Bergman et al., 
2011)

• For seepage flows within soils: 2000 ≤ 𝑅𝑅𝑒𝑒𝑐𝑐 ≤ 3000

• The previous markedly different values are a result of the different 
characteristic length that is considered to describe the problem

• Under laminar conditions

Critical values of Reynolds number

𝐻𝐻 = ℎ𝑧𝑧 + ℎ𝑝𝑝 = 𝑧𝑧 +
𝑝𝑝𝑤𝑤
𝛾𝛾𝑤𝑤

= ℎ
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• Darcy’s law allows expressing a relation between the hydraulic 
gradient and the mean flow velocity under steady conditions

• 𝑘𝑘 = hydraulic conductivity
• ℎ = piezometric head
• 𝑝𝑝𝑤𝑤= pore water pressure

• If a relationship between the mass flux density 𝑞̇𝑞𝐷𝐷,𝑖𝑖 and 𝛻𝛻𝛻 is 
considered, the rate equation describing mass transfer is found

Darcy’s law

𝑣̅𝑣𝑟𝑟𝑟𝑟,𝑖𝑖 = −𝑘𝑘𝛻𝛻ℎ = −𝑘𝑘𝛻𝛻 𝑧𝑧 +
𝑝𝑝𝑤𝑤
𝛾𝛾𝑤𝑤

• 𝑔𝑔 = gravity
• 𝑧𝑧 = vertical coordinate

𝑞̇𝑞𝐷𝐷,𝑖𝑖 = −𝑘𝑘𝛻𝛻ℎ
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• The hydraulic conductivity of geomaterials depends on the 
characteristics of the medium across which the fluid flows as well as 
on the physical properties of the fluid (Vulliet et al., 2016), i.e.:

• Granulometry
• Soil fabric
• Dry density
• Temperature

• In rock masses, hydraulic conductivity depends on the 
characteristics of the fractures network

Hydraulic conductivity
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Mass conservation equation
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• The mass conservation equation is the master equation that 
governs mass transfer phenomena in physical systems

• This equation expresses a relation between the kinematic 
characteristics of a fluid motion and the density of the fluid

• This master equation is also often termed continuity equation

• Usually derived in an elementary manner based on a mass balance 
for an elementary volume, similar to what presented for the energy 
conservation equation

Rationale
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• The mass conservation equation is obtained for a volume in which 
mass flows in and out, subjected to arbitrary hydraulic conditions on 
its surfaces with internal volumetric mass generation 𝑞̇𝑞𝑣𝑣 per unit 
time

• In many practical cases, no volumetric mass generation is 
considered and the fluid is assumed incompressible. Hence

Mass conservation equation

−𝛻𝛻 � 𝜌𝜌𝑓𝑓𝑣̅𝑣𝑟𝑟𝑟𝑟,𝑖𝑖 + 𝑞̇𝑞𝑣𝑣 =
𝜕𝜕𝜌𝜌𝑓𝑓
𝜕𝜕𝜕𝜕

𝛻𝛻 � 𝑣̅𝑣𝑟𝑟𝑟𝑟,𝑖𝑖 = 0
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• For analyses of seepage flows within geomaterials fully saturated 
with water, it is common to assume that the solid grains are 
incompressible and the volume fraction of the fluid is characterised 
by a bulk density of 𝜌𝜌 ≡ 𝑛𝑛𝜌𝜌𝑤𝑤. Hence

• If the porous medium is also assumed to be incompressible and no 
volumetric mass generation occurs, the above can be rewritten as

Mass conservation equation

−𝛻𝛻 � 𝜌𝜌𝑤𝑤𝑣̅𝑣𝑟𝑟𝑟𝑟,𝑖𝑖 + 𝑞̇𝑞𝑣𝑣 =
𝜕𝜕𝜕𝜕𝜌𝜌𝑤𝑤
𝜕𝜕𝜕𝜕

𝛻𝛻 � 𝑣̅𝑣𝑟𝑟𝑟𝑟,𝑖𝑖 = 0
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• Analogous considerations to those presented for characterising 
heat transfer problems hold for fully describing mass transfer 
problems with reference to the initial and boundary conditions

• In this case, the boundary conditions are generally expressed either 
as a function of a hydraulic head, �𝐻𝐻 (Dirichlet’s condition) or a flux, 
𝜕𝜕𝜕𝜕/𝜕𝜕𝑛𝑛𝑖𝑖 (Neumann’s condition)

Initial and boundary conditions
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Summary of typical thermal and hydraulic parameters

Material

Hydraulic 
conductivity, 

𝒌𝒌
[m/s]

Thermal conductivity, 𝝀𝝀
[W/(m °C)]

Volumetric heat 
capacity, 𝝆𝝆𝒄𝒄𝒑𝒑

[MJ/(m3°C)]
Dry Saturated Dry Saturated

Clay 10-8–10-10 0.4 – 1.0 0.9 – 2.3 0.3 – 0.6 2.1 – 3.2
Silt 10-5–10-8 0.4 – 1.0 0.9 – 2.3 0.6 – 1.0 2.1 – 2.4

Sand 10-3–10-4 0.3 – 0.8 1.7 – 5.0 1.0 – 1.3 2.2 – 2.4
Gravel 10-1–10-3 0.4 – 0.5 1.8 1.2 – 1.6 2.2 – 2.4

Concrete 10-9–10-12 0.9 – 2.0 1.8 – 2.0
Steel - 14 – 60 3.12
Water - 0.57 4.186

Air - 0.025 0.0012

(data from Phaud, 2002; Vulliet et al., 2016) 
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